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ABSTRACT

Quasi-vertical profiles (QVPs) obtained from a database of U.S. WSR-88D data are used to document

polarimetric characteristics of the melting layer (ML) in cold-season storms with high vertical resolution and

accuracy. A polarimetric technique to define the top and bottom of the ML is first introduced. Using the

QVPs, statistical relationships are developed to gain insight into the evolution of microphysical processes

above, within, and below the ML, leading to a statistical polarimetric model of the ML that reveals charac-

teristics that reflectivity data alone are not able to provide, particularly in regions of weak reflectivity factor at

horizontal polarization ZH. QVP ML statistics are examined for two regimes in the ML data: ZH $ 20 dBZ

and ZH , 20 dBZ. Regions of ZH $ 20 dBZ indicate locations of MLs collocated with enhanced differential

reflectivity ZDR and reduced copolar correlation coefficient rhv, while for ZH , 20 dBZ a well-defined ML is

difficult to discern usingZH alone. Evidence of largeZDR up to 4 dB, backscatter differential phase d up to 88,
and low rhv down to 0.80 associated with lowerZH (from210 to 20 dBZ) in theML is observedwhen pristine,

nonaggregated ice falls through it. Positive correlation is documented between maximum specific differential

phase KDP and maximum ZH in the ML; these are the first QVP observations of KDP in MLs documented at

S band. Negative correlation occurs between minimum rhv in the ML and ML depth and between minimum

rhv in the ML and the corresponding enhancement of ZH (DZH 5 ZHmax 2 ZHrain).

1. Introduction

Winter precipitation events, particularly transitional

storms (e.g., Stewart 1992) and heavy snow, are difficult

to accurately forecast and nowcast, largely due to poor

parameterization of ice microphysical processes in nu-

merical weather prediction (NWP) models (e.g., Garvert

et al. 2005; Lin and Colle 2009; Stark et al. 2013). Since

snow and ice particles are typically nonspherical and have

aspect ratios, orientations, and bulk densities that vary

significantly in clouds both temporally and spatially, po-

larimetry is a valuable tool that can be used to estimate

bulk properties of storms (Ryzhkov et al. 1998). The most

pronounced and persistent polarimetric signatures in

stratiform clouds are typically those associated with

the melting layer (ML) and the dendritic growth layer

(DGL—between2108 and2208C; e.g., Moisseev et al.

2009; Kennedy and Rutledge 2011; Bechini et al. 2013;

Andrić et al. 2013; Griffin et al. 2014, 2018; Schrom

et al. 2015; Kumjian and Lombardo 2017).

Ice microphysical processes are particularly complex

within and near MLs and are not completely under-

stood, resulting in poor representation of ML mi-

crophysics in numerical models. MLs are identified

by a narrow, nearly horizontal layer beneath the 08C
isotherm that is typically characterized by high radar

reflectivity ZH, reduced copolar correlation coefficient

rhv, and increased differential reflectivity ZDR as par-

ticles melt (e.g., Byers and Coons 1947; Stewart et al.

1984; Illingworth and Caylor 1989; Zrnić et al. 1993;

Fabry and Zawadzki 1995; Gourley and Calvert 2003;

Brandes and Ikeda 2004; Tabary et al. 2006;Wolfensberger

et al. 2015). Developing a thorough understanding of the

polarimetric properties of the ML is important for several

reasons. First, the microphysical structure of the ML mir-

rors key microphysical processes of precipitation forma-

tion and evolution aloft and is also closely related to rain

drop size distributions below the ML (e.g., Wolfensberger

et al. 2015; Kumjian et al. 2016; Trömel et al. 2014, 2017,

2019). Second, current NWP models do not adequately

treat melting of snow within the ML, and, third, satellite

retrievals require an appropriate microphysical model ofCorresponding author: Erica M. Griffin, erica.griffin@noaa.gov
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theML that does not exist. Ideally, all existing models and

retrievals should be optimized using vertical profiles of

polarimetric radar variables after converting their outputs

to the fields of radar variables. These issues all point to the

importance of obtaining a catalogue of polarimetric

signatures in the ML against which model outputs and

satellite retrievals can be compared.

Another important application of improved ML ob-

servations is to mitigate ‘‘bright band’’ contamination in

quantitative precipitation estimation (QPE) estimates

at large distances from the radar, where the radar’s beam

intersects mixed-phase and frozen particles within the ML

resulting in erroneous rainfall estimates (Giangrande et al.

2008). Techniques that use vertical profiles of reflectivity

(VPR) to mitigate ML contamination in QPE have been

developed and used with limited success (e.g., Fabry and

Zawadzki 1995). More recently, there have been efforts

to augment the use of ZH in VPRs by complementing it

with ZDR and rhv in a scheme referred to as polarimetric

vertical profiles of rain (PVPR; e.g., Matrosov et al. 2007;

Kirstetter et al. 2013; Trömel et al. 2017, 2019).

While relatively few studies have documented the

polarimetric characteristics of MLs (e.g., Trömel et al.

2014, 2017, 2019; Kumjian et al. 2016; Carlin andRyzhkov

2019), several (e.g., Brandes and Ikeda 2004; Tabary et al.

2006; Giangrande et al. 2008; Matrosov et al. 2007;

Boodoo et al. 2010; Kalogiros et al. 2013;Wolfensberger

et al. 2015) have proposed algorithms to automatically

detect either the height of the 08C level or top and bottom

of the ML in polarimetric PPIs or RHIs using different

combinations and thresholds of rhv, ZDR, and ZH. For

example, Wolfensberger et al. (2015) developed an al-

gorithm to detect theML in stratiform precipitation using

polarimetric X-band RHI scans. Their results indicated

strong relationships between ML depth and the presence

of rimed particles, the vertical velocity of particles, and

ML intensity.

More recently, polarimetric quasi-vertical profiles

(QVPs; used in this study and described in more detail

in section 2) have been used to study ice microphysical

processes and document their temporal evolution. The

QVP methodology was first implemented by Kumjian

et al. (2013) to investigate polarimetric characteristics of

refreezing signatures in winter storms and Trömel et al.

(2014) to document the reliability of measurements of

backscatter differential phase d in theML. Ryzhkov et al.

(2016) more formally developed the QVP methodology

and documented its many benefits, including its abilities

to continuouslymonitor the evolution of theMLandDGL

with high vertical resolution, to easily compare data from

polarimetric WSR-88D instruments to data from verti-

cally looking remote sensors (e.g., wind profilers, lidars,

and cloud radars), and to potentially discriminate between

rimed and aggregated snow. Since then, QVPs have been

used by several researchers (e.g., Kumjian and Lombardo

2017; Tobin andKumjian 2017;Griffin et al. 2018) to study

the microphysical structure of stratiform clouds.

Perhaps most relevant to this study is the study of

Trömel et al. (2017, 2019), who used QVPs to develop

polarimetric rainfall estimation algorithms. To gain

insight into microphysics within and above the ML,

Trömel et al. (2019) followed theML detection method

of Wolfensberger et al. (2015) to conduct a study that

examined X-band polarimetric radar data from 52

stratiform events in Bonn, Germany (BoXPol). QVPs

were used to estimate ZH, ZDR, rhv, andKDP in the ML

and DGL at X band. They were also the first to docu-

ment KDP statistics in the ML at X band. KDP is a

particularly valuable polarimetric variable since it contains

important information about ice microphysics and is es-

pecially useful for the quantification of ice (e.g., Ryzhkov

et al. 1998; Griffin et al. 2018; Ryzhkov et al. 2018). It also

more accurately characterizes precipitation flux in theML

than eitherZH orZDR,which are both heavily weighted by

large wet snow aggregates (e.g., Trömel et al. 2017, 2019).

Since there is often a notable contribution of d to the total

differential phase FDP in the ML at S band, Griffin et al.

(2018) introduced a method to remove d contamination

in the estimation of KDP. Currently, more statistics are

needed to understand the behavior of KDP in the ML

and its relation to ice processes aloft and precipitation

rates at the surface.

Since January of 2013, we have compiled a database that

consists of thousands of hours of polarimetric WSR-88D

S-band radar observations in a wide variety of winter

precipitation events. Many of those datasets exhibit sev-

eral intriguing and repetitive polarimetric signatures. In

this study, we use QVPs produced from 33 WSR-88D

datasets collected during 17 winter weather events to

investigate the microphysical evolution and significance

of some of those signatures and to improve understanding

of the structure and behavior of the ML in cold-season

precipitation. Radar data and their microphysical inter-

pretation are presented in context of the thermodynamic

environment, provided by the operational 3-km High-

Resolution Rapid Refresh (HRRR; Smith et al. 2008;

Benjamin et al. 2016) model, to develop a polarimetric

model of theML and document statistical relationships in

the ML to gain insight into the evolution of the micro-

physical processes above, within, and below the ML.

2. Methodology

The overarching goals of this study are 1) to create a

large-scale database that documents polarimetric char-

acteristics of the ML in stratiform rain events, and 2) to
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use statistical relationships developed from that data-

base to gain insight into the evolution of microphysical

processes above, within, and below the ML. In total, the

database included several hundred WSR-88D datasets

collected during cold-season events. From that data-

base, 33 WSR-88D datasets from 17 events were chosen

for analysis in this study. Those datasets are listed in

Table 1. To eliminate contributions from warm-season

events, in which the microphysical structure of the ML

might be influenced by nearby convection, particular

care was taken to choose cold-season events that ex-

hibited widespread regions of stratiform precipitation.

As can be seen from Table 1, all events chosen for this

analysis were collected during cold-season months (from

late November through early March). Most also exhibited

winter weather precipitation types (snow, wet snow, ice

pellets, and freezing rain) within the radar domain. The

events were manually inspected to ensure they exhibited

distinctMLpolarimetric signatures that were high enough

above the surface to allow for calculation of variables at

0.3km below the ML. The elevation angles of the cases

were selected based on comparison of the ML QVP data

at the 9.98–19.58 angles for each case. The elevation angle

with the most distinct ML signature (and with a ML that

was high enough above the surface to allow for calculation

of variables just below theML)was selected for that event.

The events listed in Table 1 constitute approximately

400h of data. In that sense, this study is probably most

similar to that of Fabry and Zawadzki (1995, hereinafter

FZ95), who used vertical profiles of reflectivity obtained

from 600h of vertically pointing X-band radar data (and

50h ofUHFboundary layerwind profiler data) to produce

quantitative analysis of microphysical processes through

the ML. While their results are valuable, they lack a po-

larimetric perspective that can reveal characteristics of

the ML that reflectivity data alone are not able to pro-

vide. We now present the method for identifying the ML

in the radar data and extracting polarimetric variables

above, within, and below the ML of those events.

a. QVPs

As noted earlier, we utilize QVP methodology to

study polarimetric signatures above, within, and below

the ML of winter precipitation systems. As documented

by Ryzhkov et al. (2016) and Griffin et al. (2018), QVPs

can be constructed by azimuthally averaging ZH, ZDR,

rhv, and FDP fields at relatively high antenna elevation

angles of 108–208. Use of these high elevation angles

reduces the effects of beam broadening and horizontal

inhomogeneity, which allows for quantifying polari-

metric characteristics of clouds and precipitation with

high vertical resolution and dramatically improved sta-

tistical accuracy (Ryzhkov et al. 2016). The resulting

QVPs display the polarimetric variables in a conve-

nient time-versus-height format, which allows for effi-

cient investigation of key cloud microphysical processes

and their temporal evolution. The QVP’s higher vertical

resolution and reduced noisiness in the polarimetric

signatures allows for observation of smaller-scale fea-

tures that would not be observable using range height

indicators reconstructed from plan-position indicator

scans with lower resolution. QVPs, including methods

to extract d and accurately compute KDP in the ML, are

discussed in more detail by both Ryzhkov et al. (2016)

and Griffin et al. (2018).

In this study, QVPs are constructed using azimuthal

medians of the polarimetric radar fields, rather than azi-

muthal averaging as in Ryzhkov et al. (2016) and Griffin

et al. (2018). After comparingMLdetection results, it was

found that using medians rather than averages of the

polarimetric radar data provides more realistic detection

TABLE 1. QVP winter ML events, including their dates, radars,

radar elevation angles, and periods for 17ML winter precipitation

events that were observed from the perspective of the 33 QVPs

used in this study.

Date Radar Elev (8) Time (UTC)

28 Jan 2014 KJGX 19.5 1314–0000

KMOB 19.5 1218–0000

KCLX 19.5 1910–2356

KLCH 19.5 1109–2300

29 Jan 2014 KLTX 19.5 0004–1000

1 Feb 2014 KEAX 12.5 0353–1700

3 Feb 2014 KDIX 19.5 0641–1900

4 Feb 2014 KPAH 9.9 1553–0000

11 Feb 2014 KLTX 19.5 0900–0000

KGWX 19.5 0006–0000

KMHX 19.5 0352–2400

KFFC 9.9 0008–1600

12 Feb 2014 KGSP 12.5 1438–0000

KRAX 14.6 0809–0000

KFFC 9.9 0212–0000

KJGX 19.5 0244–0000

KLTX 19.5 0614–2030

KCLX 14.6 0009–2351

KDGX 10.0 0006–1955

KBMX 14.6 0119–2243

13 Feb 2014 KGSP 12.5 0004–1500

2 Mar 2014 KTLX 19.5 1801–2207

21 Feb 2015 KLVX 19.5 0321–2219

25 Feb 2015 KFFC 19.5 1400–0000

KBMX 9.9 1224–2355

3 Mar 2015 KCLE 14.6 1156–0000

4 Mar 2015 KLVX 19.5 0326–0000

KPAH 19.5 0026–0000

KVWX 19.5 0007–0000

5 Mar 2015 KLWX 9.9 0009–2100

27 Nov 2015 KLTX 19.5 1006–2000

27 Dec 2015 KVNX 10.0 0004–1834

22 Jan 2016 KRAX 9.9 0546–0000
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of the ML, particularly in terms of ML depth and KDP

values. Specifically, results using azimuthal medians ex-

hibit a shallower, more realistic, and tighter-looking ML

signaturewith slightly smallerKDP values (on the order of

0.018km21) when compared to the averaging results. The

comparatively smaller KDP values are more representa-

tive of the datasets since the majority of the QVP KDP

values in the 17 cases are small and are not ‘‘washed out’’

by averaging.

b. Defining the top and bottom of the ML

A crucial step in examining polarimetric and micro-

physical characteristics of the ML is to accurately define

both the top and bottom of theML. In their study, FZ95

capitalized on the fact that vertical profiles of ZH

through the ML (see their Fig. 1) are typically charac-

terized by a sharp increase/decrease in reflectivity at the

top/bottom (associated, respectively, with the heights

where melting begins/ends) of the ML. By determining

the heights of maximum curvature associated with these

points, FZ95 were able to determine physically relevant

heights associated with both the top and bottom of the

ML. For the FZ95 method (hereinafter also referred to

as the curvature method) to be successful, however,

FZ95 noted that it was necessary for the vertical profile

of reflectivity to exhibit strong curvature at both the top

and bottom of the ML, and not elsewhere. In this study,

we seek to develop a polarimetric method for deter-

mining the top and bottom of the ML that not only

closely replicates the results of FZ95, but also provides

heights for the ML top and bottom in regions of weak

reflectivity where polarimetric signatures of a ML are

strong but the FZ95 curvature method was found to

frequently fail.

Since the onset of melting also results in an increase

in hydrometeor diversity, the most logical polarimetric

method to determine the height of the ML top and

bottom is to utilize rhv (Giangrande et al. 2008). For each

event analyzed, the height of minimum rhv was first de-

termined for a narrow height interval that encompassed

the ML and HRRR-model-estimated 08C isotherm over

the entire period of that event. Once the height of the

minimum rhv was found, an upward/downward search

was conducted from that point to find the ML top/bottom

heights associated with the first occurrence of rhv that

exceeded a predefined threshold. After testing this

method on several events, a threshold of rhv $ 0.97 was

found to exhibit the best agreement with the curvature

results of FZ95. Overall, the heights of the ML top

and ML bottom for the FZ95 curvature and polari-

metric methods compare well within regions of higher

ZH, with the FZ95 curvature method exhibiting slightly

higher (i.e., approximately 200m) ML tops and slightly

higher or lower (i.e., approximately 50m) ML bottoms.

Within regions of ZH , 20dBZ, the FZ95 method

frequently failed.

c. Polarimetric signatures above, within, and below
the ML

An example of the application of our method to a

winter storm is illustrated by Fig. 1, which shows a time

series of QVPs from the KFFC (Atlanta, Georgia)

WSR-88D on 11 February 2014. Contours of HRRR

model wet-bulb temperature (8C) are overlaid in each

plot, for interpretation of the radar data. As can be seen

in Fig. 1, a well-defined ML is difficult to discern from

approximately 0000 to 0300UTC usingZH alone (Fig. 1a),

during which the curvature method of FZ95 failed to

produce accurate results. On the other hand, a distinct

ML signature is clearly evident in the ZDR and rhv fields

(Figs. 1b,c) over this same period. Results from the po-

larimetric method of ML top/bottom height detection

are depicted in Fig. 1 by the solid black lines overlaid on

each polarimetric variable, showing good overall vi-

sual consistency with the ML as depicted by the ZDR

and rhv fields. Note that all ZDR measurements are

corrected for hardware offset bias, according to the

preprocessing procedures detailed by Ryzhkov et al.

(2005). This ensures ZDR in heavily aggregated snow is

approximately 0.1–0.2 dB, and ZDR in pure rain near

the surface is 0–5 dB, for consistency across all cases in

this investigation.

Once the ML top/bottom heights were determined,

each time period was examined to derive 24 polarimetric

characteristics above, within, and below the ML. These

24 polarimetric characteristics are listed and defined in

Table 2 and are used throughout the remainder of the

text to examine polarimetric and microphysical features

in the vicinity of the ML. To examine microphysically

driven connections between the ML and the DGL, the

table also includes polarimetric variables derived from

the DGL, as discussed by Griffin et al. (2018).

3. Data analysis

In this section, we present data from S-band polari-

metric WSR-88D QVPs at high elevation angles (i.e.,

9.98–19.58) for the datasets presented in Table 1. The

ML events occurred within stratiform precipitation

over radars located in the southern, midwestern, and

northeastern United States. Since the events presented

in Table 1 constitute more than 400 h of observations

and thousands of data points, composite histograms

and composite density scatterplots are used to more

effectively demonstrate the statistical relationships be-

tween the polarimetric variables. Weighted polynomial
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regressions are also implemented to obtain the most

accurate fits while reducing the influence of any signifi-

cant outliers.

a. Polarimetric statistics of the ML

Figures 2a–f present composite (computed using ML

data obtained from QVPs of all of the events listed in

Table 1) histograms of maximum ZH in the ML,

maximum ZDR in the ML, maximum KDP in the ML,

minimum rhv in the ML, enhancement of ZH (i.e.,

DZ5maximumZH in ML2ZH in rain), and maximum

FDP (i.e., d) in the ML, respectively, while Fig. 3

represents a composite histogram of ML depth (DH).

Note that the system differential phase is removed prior

to computing the FDP values presented in Fig. 2. Since

the radar beam only passes through a few kilometers of

precipitation prior to encountering the ML, the FDP

measurement within the ML typically provides an ac-

curate representation of d in the ML. Therefore, d is

hereinafter used to define maximum FDP. Note that

these values are significantly smaller than the one shown

for an individual radial in Fig. 2 of Griffin et al. (2018).

This is due to aFDP processing error inGriffin et al. (2018)

that resulted in some FDP values not being unfolded

FIG. 1. QVPs of (a) ZH (dBZ), (b) ZDR (dB), (c) rhv, and (d) KDP (8 km21) for KFFC from 0008 through

1559UTC 11 Feb 2014, at 9.98 elevation. Contours of HRRRmodel wet-bulb temperature (8C) are overlaid in each

plot. Also, ZH is contoured at 10, 20, 30, and 40 dBZ. The ML top and bottom are represented by the thick black

lines, and the thick dashed line between them represents the height of maximumZH,ZDR, orKDP or minimum rhv.
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correctly before computing QVP averages. With the

revised methodology presented in this paper, which

includes using median values, this error has been cor-

rected, resulting in more accurate FDP values. Each of

the histograms also include overlays of corresponding

distributions of ML data for which ZH , 20 dBZ (indi-

cated by the orange lines) and ZH $ 20dBZ (indicated

by the blue lines). These data are included since analyses

using the FZ95 curvature ML detection method fre-

quently failed for ZH , 20dBZ and the two ML ZH

regimes are apparent in trends in the data, analyzed

later in the paper.

As will be discussed, these distributions exhibit both

similarities and differences compared to X-band polar-

imetric ML distributions documented byWolfensberger

et al. (2015) and Trömel et al. (2017, 2019). It is impor-

tant to note that the QVP-based histograms of polari-

metric variables in the ML in Fig. 6 of Trömel et al.

(2019) improve upon the RHI-based analyses in Fig. 15

of Wolfensberger et al. (2015). The distributions in

Trömel et al. (2017, 2019) are narrower than those in

Wolfensberger et al. (2015) due to the resolution

differences in QVP versus RHI methods. In general,

implementation of the QVP method produces more

narrow histograms and more accurate quantification

of polarimetric variables compared to those using the

RHI method.

In Fig. 2, the distribution of maximum ZH in the ML

ranges from 210 to 50 dBZ, with an overall average of

25 dBZ (Fig. 2a), and maximum ZDR in the ML ranges

between;0 and 4dB, with an average of 1.3dB (Fig. 2b).

Also, Fig. 2d illustrates corresponding minimum rhv in

the ML between 0.84 and 1.0, with an overall average of

0.94.Aside from the inclusion of data forZH, 0dBZ, the

shapes and mean values of the ZH, ZDR, and rhv distri-

butions closely agree with those documented at X band

by Wolfensberger et al. (2015) and Trömel et al. (2017,

2019). A comparison of the results in Figs. 2a,b,d, Fig. 15

in Wolfensberger et al. (2015), and Fig. 6 in Trömel et al.

(2019) shows that all three studies exhibit ZH distribu-

tions that are noticeably skewed toward higher ZH near

30dBZ, the greatest ZDR densities occurring between 0

and 2dB, and rhv distributions peaking near 0.95.

In Fig. 2c, maximum KDP in the ML ranges between

08 and 0.258km21, with an average of 0.028km21 both

overall and within Z $ 20 dBZ and a comparatively

lower mean KDP of 1.4 3 10248km21 within low ZH

(likely resulting from a low concentration of pristine

crystals). These are the first QVP KDP measurements

in MLs documented at S band. Note that theKDP values

within low ZH in Fig. 2c are too small to view alongside

the rest of the KDP dataset. The KDP distribution is no-

ticeably weighted toward smaller values, with the ma-

jority of the dataset occurring between 08 and 0.18km21.

After scaling and taking into account the difference in

radar wavelength, these KDP values are comparable to

those documented by Wolfensberger et al. (2015) and

Trömel et al. (2019). The shape of the distribution is

similar to that of Trömel et al. (2019), who observed

compositemeanKDP in theMLof 0.198km21 with values

ranging between approximately 0.068 and 0.338km21 at

X band, while Wolfensberger et al. (2015) observed

composite mean KDP in the ML of 0.118km21 with values

ranging between approximately 20.58 and 1.58km21

at X band.

In Fig. 2e, the enhancement ofZH (i.e.,DZ5maximum

ZH inML2ZH in rain) varies between approximately25

and 15dBZ, with an overallmean of 5.8dBZ. This suggests

that ZH in the ML is on average 5.8dBZ greater than that

of ZH in rain, which can be valuable information for

improving rainfall estimation in brightband regions.

Next, in Fig. 2f, d in the ML generally ranges between

08 and 58 and reaches up to 108 with an overall mean of

1.638. The d within ZH , 20 dBZ in the ML ranges

between approximately27 and 38, with a smaller mean

TABLE 2. Polarimetric variables derived from above, within, and

below the ML. Variables derived from the DGL are also included

(Griffin et al. 2018).

Variable Definition

MLtopHeight Height of ML top

MLbotHeight Height of ML bottom

MLdepth Depth of ML

DZH Enhancement of ZH (i.e., Max ZH

in ML 2 ZH in rain)

MLmaxZH Max ZH in ML

MLmaxZDR Max ZDR in ML

MLminrhv Min rhv in ML

MLmaxd Max FDP (i.e., d) in ML

MLmaxKDP Max KDP in ML

MLmaxZHHeight Height of the max ZH in the ML

MLmaxZDRHeight Height of the max ZDR in the ML

MLminrhvHeight Height of the min rhv in the ML

MLmaxdHeight Height of the max d in the ML

MLmaxKDPHeight Height of the max KDP in the ML

ZHSnow ZH at 0.3 km above MLtopHeight

ZDRSnow ZDR at 0.3 km above MLtopHeight

rhvSnow rhv at 0.3 km above MLtopHeight

dSnow d at 0.3 km above MLtopHeight

KDPSnow KDP at 0.3 km above MLtopHeight

ZHRain ZH at 0.3 km below MLbotHeight

ZDRRain ZDR at 0.3 km below MLbotHeight

rhvRain rhv at 0.3 km below MLbotHeight

dRain d at 0.3 km below MLbotHeight

KDPRain KDP at 0.3 km below MLbotHeight

DGLmaxZH 90th-percentile max ZH in DGL

DGLmaxZDR 90th-percentile max ZDR in DGL

DGLminrhv 90th-percentile min rhv in DGL

DGLmaxKDP 90th-percentile max KDP in DGL
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of20.088 (orange line in Fig. 2f) as compared with that

of 2.238 for d within ZH $ 20 dBZ (blue line in Fig. 2f).

Wolfensberger et al. (2015) do not include d analyses,

but Trömel et al. (2017, 2019) document d in the ML at

X band, with a mean of 1.88 and maximum values up to

58, which are slightly smaller than but comparable to

those observed in the present study. Also, the shape of

the total d distribution compares well for values be-

tween 08 and 58, where peak densities occur in both

distributions (Figs. 2f and 6 in Trömel et al. 2019). The

total d distribution is skewed toward lower values (i.e.,

from approximately218 to 38) within low ZH regions in

FIG. 2. Composite histograms of (a) maximum ZH in the ML (dBZ), (b) maximum ZDR in the ML (dB), (c) maximum KDP in the

ML (8 km21), (d) minimum rhv in the ML, (e) DZH (i.e., ZH in ML2ZH in rain; dBZ), and (f) d (8) in theML, for the 33 QVPML events.

Mean, 90th-percentile maximum (indicated as max), and 10th-percentile minimum (indicated as min) values of the variables are indicated

in each panel, for the total dataset (represented by the thick black lines), the data corresponding to ZH , 20 dBZ (represented by the

orange lines), and the data corresponding to ZH $ 20 dBZ (represented by the blue lines).
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the ML and toward slightly higher values (i.e., mostly

between 08 and 58) within regions of larger ZH in the

ML. According to Trömel et al. (2017, 2019), although

positive values of d are most common, negative d can

also occur; the estimates of d are obtained by inte-

grating over the full particle size spectrum. They sug-

gest that, at X band, large negative d associated with

melting particles in the middle of the ML may cancel

out positive d associated with other hydrometeors, re-

sulting in smaller magnitudes of d compared with those

at S band. They further explain that larger dmagnitudes

can likely result from the occurrence of large, partially

melted snowflakes that increase in size via riming and

aggregation.

The composite histogram of ML depth in Fig. 3 re-

veals an average ML depth of 340m, with depths as

small as approximately 100m and as large as approxi-

mately 1100m. The shape and magnitude of the distri-

bution are similar to those ofWolfensberger et al. (2015)

and Giangrande et al. (2008). Giangrande et al. (2008)

observed typical ML thicknesses of approximately

300m with a long right tail and Wolfensberger et al.

(2015) document ML thicknesses ranging between

175 and 600m, with an average of 320m. Trömel et al.

(2019) also observed ML thicknesses between ap-

proximately 100 and 500m in Bonn, Germany. Other

similar statistical observations of ML depth are docu-

mented by Bandera et al. (1998) and Durden et al.

(1997). For data within Z $ 20dBZ, the minimum ML

depth of 100m and maximumML depth of 1000m (e.g.,

Fig. 3; blue line) closely compares with that observed by

FZ95, who document brightband thicknesses ranging

between approximately 150 and 900m (e.g., Fig. 6 in

FZ95), which is expected since our polarimetric ML

detection method was developed to closely approximate

the results of FZ95 curvature method.

b. Scatterplot comparisons of polarimetric
relationships

1) d IN THE ML

A notable feature of the polarimetric QVPML data is

the values of d observed at S band. As depicted in each

of the composite scatterplots in Figs. 4a and 4b, the

largest d in the ML reaches approximately 88, while the

majority of the d values observed in the dataset fell be-

tween 08 and 48, which is significantly smaller than the

S-band observations of d up to 708 reported by Trömel

et al. (2014). It is very likely that very high values of d at

S band reported in the Trömel et al. (2014) study were

the result of a processing error of FDP. Note that non-

density composite scatterplots are used here to focus on

the extent of the d values. In Fig. 4a, the relationship

between maximum d and maximum ZH in the ML is

depicted. Although the majority of the d . 48 values
occur forZH$ 20dBZ, there are also a significant number

of d. 48 data points within very lowZH, 20 dBZ in the

FIG. 3. As in Fig. 2, but for ML depth (km).

FIG. 4. Composite scatterplots of (a) d in the ML (8) vs maximum ZH in the ML (dBZ) and (b) d in the ML vs

maximum ZDR in the ML (dB), for the 33 QVP ML events. Orange and blue data points represent ML data for

which ZH , 20 dBZ and ZH $ 20 dBZ, respectively.
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ML (Fig. 4a). Figure 4b also illustrates that d is corre-

lated with ZDR in the ML. For example, in Fig. 4b,

positive correlation is evident between maximum d and

maximum ZDR in the ML, with the larger d generally

occurring for larger ZDR. Specifically, ZDR ranges be-

tween 0 and 4dB within d ranging up to 88. The orange

and blue data points represent ML data for which ZH ,
20dBZ and ZH $ 20dBZ, respectively. These results

support those of Trömel et al. (2013, 2017, 2019), who

observed strong interdependence between maximum

ZDR and d in the ML at X band. It is expected that ex-

cluding the outlying cluster of data for which d . 48
would result in stronger correlations in Fig. 4b. Overall,

the larger ZDR in the ML generally occur with larger d

(Fig. 4b), potentially indicating more efficient aggrega-

tion above the ML (Fridlind et al. 2017; Trömel et al.

2014; Ryzhkov et al. 2016) and larger-sized partially

melted snowflakes in the ML (Trömel et al. 2013, 2014),

as the ice particles acquire more liquid meltwater and

become more oblate as they fall through the ML.

The estimated maximal values of d in this study are

closer to the ones reported by Zrnić et al. (1993; 108–158)
andmentioned byMelnikov et al. (2005; 108). Zrnić et al.
(1993) observed d up to 108–158 for large (.10mm),

oblate, and spongy (water soaked) aggregates and ex-

plain that a significant increase in d can occur when

hydrometeors are large enough to scatter in the resonant

regime. They also explain that if an aggregate is coated

with a sufficient amount of water (i.e., if thickness of the

water coating is 10% of the particle’s radius), the re-

sultant polarimetric radar signature is similar to that of

an aggregate of the same size that is filled with water

(i.e., a liquid hydrometeor; Zrnić et al. 1993). Melnikov

et al. (2005) and Melnikov (2012) offered an expla-

nation for mechanisms that might be responsible for

d enhancements in the ML, indicating that while d is

small for dry ice particles with any oblateness, it would

be expected to see increases in d for oblate wet particles

that contain ice cores as oblateness increases and as a

thick water coating forms on the particle. They also

observed d. 108 for large and oblate spongy snowflakes.
Furthermore, enhancement of d in the ML as seen in

Fig. 4 may suggest a reduction in tumbling snow ag-

gregates. The width s of the canting angle distribution

within the DGL is approximately 108 (Matrosov et al.

2005; Melnikov and Straka 2013; Bukov�cić et al. 2018),

with dry aggregates more chaotically oriented below.

As aggregation begins to dominate, s increases to up to

408 (Hendry et al. 1987) and snowflakes become more

randomly oriented (Bukov�cić et al. 2018). Once ag-

gregates begin to melt, they become more ordered and

s gradually reduces from approximately 408 in snow to

less than 108 below the ML.

2) MAXIMUM ZDR VERSUS MINIMUM rHV IN

THE ML

Figure 5 presents a composite density scatterplot of

maximum ZDR in the ML versus minimum rhv in the

ML. Maximum ZDR ranges mostly from 0 to 3 dB, with

corresponding minimum rhv between approximately

0.84 and 0.98. The majority of the dataset is represented

by rhv between approximately 0.88 and 0.96 and ZDR

between 0.5 and 2dB, as is evidenced by the deeper blue

colors representing the largest densities of data points.

As expected, a negative correlation (i.e., r 5 20.62)

exists between the variables. As ice particles begin to

melt as they fall through the ML, their dielectric con-

stant and density increase and the larger partiallymelted

snowflakes result in increased ZDR and reduced rhv in

the ML. Correlation coefficient rhv in the ML decreases

with increasing liquid water, which further enhances

diversity in hydrometeor types with different shapes and

orientations (Illingworth and Caylor 1989; Balakrishnan

and Zrnić 1990; Zrnić et al. 1993), since rhv is a measure

of variability of hydrometeors’ shape, size, orientation,

and phase composition.

3) TWO ML REGIMES

Another significant and repetitive feature of the 33QVP

ML events is the occurrence of two ML regimes: low ZH

(,20dBZ) and higher ZH ($ 20dBZ). As previously

demonstrated in the KFFC 11 February 2014 9.98 QVP

in Fig. 1, a region of higher ZH distinctly indicates the

presence and location of a ML, collocated with enhanced

ZDR and reduced rhv in a layer between approximately

2 and 2.5 km during approximately 0500–1600 UTC

FIG. 5. Composite density scatterplot of maximum ZDR in the

ML (dB) vs minimum rhv in the ML for the 33 QVP ML events.

Negative correlation (r520.62) occurs between these variables as

ice particles begin to melt as they fall through the ML and become

more oblate as they become water coated.
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(Figs. 1a–c).On the other hand, prior to about 0300UTC, a

well-defined ML is difficult to discern from approximately

0000 to 0300 UTC using ZH alone. During this period of

weak ZH (,20 dBZ), the ML is only identifiable in the

polarimetric imagery where a distinct ML signature is

clearly evident in the ZDR and rhv fields (e.g., Figs. 1b,c,

respectively). Here, the reduced ZH and rhv combined

with enhanced ZDR indicate a very low concentration of

small hydrometeors including pristine crystals such as

dendrites (0.01–1-mmmaximumdimensions; Straka et al.

2000), plates (0.01–3-mm maximum dimensions; Straka

et al. 2000), or needles that contribute to the enhanced

ZDR and reduced rhv because of their very nonspherical

shapewithin and above theML. The low concentration of

these small crystals and a lack of larger aggregates suggest

an absence of aggregation, while the smaller particle sizes

and their resultant quick melting produce a very shallow

ML. Under such a scenario, the enhancement of ZH in a

thin ML is either similar to or lower than the one in the

‘‘mature’’ and thick ML where continuing aggregation of

wet snowflakes within the bright band further increases

the ZH maximum. Beam smearing makes the very thin

ML undetectable in terms of ZH (even at close distances

from the radar). However, such beam smearing may not

dissolve the ZDR and rhv ML signatures because ZDR is

anomalously high and rhv is very low for melting ice

particles with very anisotropic shape. This fact empha-

sizes the benefit of polarimetric radar measurements for

detecting extra thin MLs.

The twoML regimes are also evident in the composite

density scatterplot in Fig. 6, which displays the relationship

between maximum ZDR in the ML and ZDR in rain (i.e.,

300m below the bottom of the ML). The data show two

distinct branches of high ZDR in the ML, one related to

highZH in theML at times when aggregation is significant

and the other related to low ZH in the ML at times when

nonaggregated pristine ice crystals are more prevalent

(Fig. 6). If the data for lowZH, 20dBZ are filtered out, a

strong relationship betweenmaximumZDR in theML and

ZDR in rain is evident (not shown), with higher ZDR in the

ML occurring with higher ZDR in rain. This strong rela-

tionship is potentially valuable for improving future rain-

fall estimation in brightband regions, particularly at more

distant ranges from the radar. Further evidence of the

twoML regimes is provided in Fig. 7, which illustrates

the nonmonotonic dependence of ZDR on ZH in the

ML. When maximum ZH in the ML ranges between

approximately 210 and 20 dBZ, a broader range of

ZDR from 0 to 4 dB occurs as pristine, nonaggregated

crystals fall through the ML. During larger maximum

ZH in the ML (i.e., $20 dBZ), a stronger relationship

is apparent as larger ZH generally coincides with in-

creasing ZDR in the ML. Overall, there is ample evi-

dence that polarimetric radar data are much more

valuable for detecting ML microphysical processes

than conventional reflectivity data alone, particularly

in regions of low ZH.

4) KDP MEASUREMENTS IN THE ML

Another feature of this investigation is the estimation

of KDP in the ML, documented for the first time at S

band. Statistics ofKDP in the ML are important because

FIG. 6. Composite density scatterplot of maximum ZDR in the

ML vsZDR in rain for the 33QVPML events. TwoML regimes are

evident: 1) lower ZDR corresponding to higher ZH in the ML, re-

sulting in a distinct ML, and 2) higher ZDR corresponding to low

ZH in the ML (,;20 dBZ) where the ML is only identifiable in

polarimetric imagery. In the second region, there is a small con-

centration of small hydrometeors including crystals such as den-

drites and plates, resulting in higher ZDR.

FIG. 7. Composite density scatterplot of maximumZH in theML

(dBZ) vs maximum ZDR in the ML (dB) for the 33 QVP ML

events. Low ZH in the ML (,;20 dBZ) occurs during larger ZDR

in the ML (;0–4 dB) when pristine, nonaggregated ice falls

through it. The increase in ZH in the ML during the increase in

maximum ZDR in the ML indicates that the oblateness of particles

increases as they become water coated through melting.
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KDP is expected to be better correlated with precipita-

tion flux than ZH and ZDR, which are weighted by large

wet aggregates, while KDP is more weighted by small

melting snowflakes and resulting raindrops and may

be directly utilized for rainfall estimation in regions of

brightband contamination (Borowska et al. 2011; Trömel

et al. 2017, 2019). Figure 8 presents a composite density

scatterplot demonstrating a positive correlation (i.e.,

0.57) between maximum KDP (up to 0.228km21) and

maximum ZH (from 210 to 50 dBZ) in the ML, with

the greatest concentration of data occurring for KDP

ranging between approximately 0.001 and 0.228km21

within larger ZH . 20 dBZ. This relationship provides

confidence in the QVP processing routine implemented

for KDP estimation in the ML. Trömel et al. (2019) also

observed a moderate relationship between KDP and ZH

in the ML for the first time at X band, with a correlation

of 0.51. Therefore, it is evident that KDP measurements

in the ML can be confidently used to examine ML

microphysical processes and in turn optimize future

microphysical models.

5) ML STATISTICS VALUABLE FOR

PVPR AND QPE

The idea of a PVPRmethod implies parameterization

of the intrinsic vertical profiles of radar reflectivity

within theML using polarimetric variables such as rhv or

ZDR (Trömel et al. 2017, 2019; Ryzhkov and Zrnić 2019,

their chapter 10). This includes analysis of statistical

correlations between different variables of the vertical

profile of ZH and minimal value of rhv or maximal value

of ZDR within the ML. Figures 9 and 10 reveal statistics

that are valuable for developing a PVPR technique that

can help improve representation of ML microphysics in

NWP models and also improve polarimetric QPE in

rain. In Fig. 9a, correlation (i.e., 0.96) between maxi-

mumZH in theML andZH in rain (i.e., 0.3 km below the

bottom of the ML) is presented, with larger maximum

ZH in the ML from210 to 50dBZ occurring with larger

ZH in rain up to 40 dBZ. The majority of the data points

occur for maximum ZH in the ML between 10 and

40 dBZ and ZH in rain between 10 and 30dBZ. Trömel

et al. (2019) also observed strong correlation (i.e., 0.93)

between these variables at X band (e.g., Fig. 7 in Trömel

et al. 2019). The correlation between these variables

suggests that ZH measurements in the ML can be used

to estimate precipitation intensity near the surface in

winter weather systems, where the height of the ML is

typically very low. Furthermore, in Fig. 9b, correlation

FIG. 8. Composite density scatterplot featuring a positive cor-

relation (r 5 0.57) between maximum ZH in the ML (dBZ) and

log(maximumKDP in the ML) (8 km21) for the 33 QVPML events

(at S band).

FIG. 9. Composite density scatterplots of (a) maximumZH in the

ML vsZH in rain (dBZ) and (b) maximumZH in snow vsZH in rain

(dBZ), for the 33 QVP ML events. Correlations between the var-

iables are indicated in each panel. Note: ZH in rain5 ZH at 0.3 km

below ML bottom and ZH in snow 5 ZH at 0.3 km above ML top.
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(i.e., 0.89) exists between ZH in snow (i.e., 0.3 km above

the ML top) and ZH in rain, with larger values of ZH

above theML occurring during largerZH below theML.

Also, the greatest densities of data points occur between

approximately 10 and 30dBZ. These results suggest that

larger values of ZH above the ML can indicate greater

ZH in rain. Essentially, a higher concentration of snow-

flakes just above the ML can lead to more snowflakes

falling into the ML and thus a higher concentration of

raindrops falling below. Also, larger snowflakes above

the ML can melt into larger raindrops below.

Figure 10 illustrates statistical correlations of the ML

that are particularly important for developing a PVPR

technique to mitigate the impact of ML contamination

onQPE. Figure 10a reveals that negative correlation occurs

between minimum rhv in the ML and the corresponding

enhancement ofZH (i.e., DZH5 ZHmax2 ZHrain). Greater

differences between ZHmax in the ML and ZHrain are

generally associated with lower minimum rhv in theML,

which bolsters the results of Trömel et al. (2017, 2019) at

X band. Also, in Fig. 10b, a positive correlation exists

between maximum ZDR in the ML and DZH, with

greater ZDR in the ML generally occurring alongside

greater DZH. The depth of the ML (i.e., difference

between height ofML top and height of ML bottom) is

correlated with minimum rhv in the ML, with greater

ML depths generally occurring during lower minimum

rhv in the ML (Fig. 10c). Note that the fit equation in

Fig. 10c may not be applicable beyond the range of rhv
estimated in this particular study. Figure 10d illustrates

correlation between ML depth and maximum ZDR in

the ML, with larger ZDR in the ML generally occurring

during larger ML depths. This is expected since larger

particles take longer to melt and contribute to a

deeper ML. Figure 11 displays the relationship be-

tween maximum ZH in the ML and ML depth, with

slightly larger ML depths generally occurring during

larger ZH in the ML. This correlation is at variance

FIG. 10. Composite density scatterplots of (a) minimum rhv in the ML vs DZH (dBZ), (b) maximum ZDR in the

ML (dB) vsDZH, (c) minimum rhv in theML vsML depth (km), and (d) maximumZDR in theML vsML depth, for

the 33 QVP ML events. Note: DZH 5 maximum ZH in the ML 2 ZH in rain.
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with the findings of Wolfensberger et al. (2015) in

Switzerland who reported higher correlation between

the two variables of the ML. The difference in correla-

tion could potentially be due to difference in climate.

Differences in resolution of the QVP versus RHI methods

may also play a role. The greatest concentration of data

occurs for ML depths between approximately 150 and

450m during ZH in the ML between 0 and 40 dBZ.

Overall, these polarimetric statistics in the ML provide

important information on microphysical properties within

and near the ML and how they relate to the behavior of

precipitation in rain, which can ultimately help improve

the accuracy of polarimetric QPE in rain.

4. Discussion

The QVP polarimetric statistics presented in section 3

are valuable for advancing understanding of the relation

of polarimetric signatures in the ML to the underlying

physical processes of precipitation formation and evo-

lution throughout the depth of a cloud. Our study that

utilizes S-band radar measurements complements a

similar investigation performed by Trömel et al. (2017,

2019) in Germany at X band. In general, the results

are consistent and any differences between the two

can be attributed to the differences in radar wave-

lengths and climate conditions between the United

States and Europe.

Polarimetric properties of the ML are determined by

the type of snow falling through it that hasmicrophysical

attributes most clearly manifested by the polarimetric

signatures within the DGL in the temperature interval

between2108 and2208C (Griffin et al. 2018). Therefore,

one should expect certain correlation between polari-

metric signatures in the ML and DGL and, indeed, such

connections have been observed. For example, enhanced

KDP in theML (up to 0.228km21) was frequently found

to be associated with enhancedKDP in the DGL during

1) taller and colder cloud tops, 2) enhanced ZDR and

reduced rhv in the ML (relative to adjacent times), and

3) sagging of the ML toward the surface (e.g., during

;0600–0730UTC in Fig. 1 and during;0200–0400UTC

in Fig. 12). Also, the enhanced KDP in the DGL would

sometimes extend down to theML, indicating enhanced

concentration of nonspherical ice particles above the

ML (e.g., ;0600–0730 UTC in Fig. 1). Figure 13 illus-

trates the positive correlation (i.e., r 5 0.42) observed

between maximumKDP in the DGL and maximumKDP

in the ML for all events listed in Table 1. Note that the

fit equation in Fig. 13 may not be applicable beyond

the range of KDP estimated in this particular study.

EnhancedKDP in the ML is also found to occur during

enhanced ZH in the ML, which is illustrated by the

linear correlation found between KDP and ZH in the

ML (Fig. 8). Griffin et al. (2018) found that enhanced

KDP within the DGL are associated with taller and

colder cloud tops. Higher KDP within the DGL means

higher ice water content (IWC) and precipitation flux

(Ryzhkov et al. 2018), which increase the strength and

depth of the ML once ice particles fall through it. These

observations are consistent with the recent findings of

Carlin andRyzhkov (2019), who used a one-dimensional

spectral bin model of melting snow (i.e., 1D-MS) to in-

vestigate the relation between polarimetric characteris-

tics of modeled MLs and the maximum diabatic cooling

rates within them. They discovered that KDP is strongly

correlated with diabatic cooling rate due to melting of

particles in the ML, which can lead to a dip in the height

of the ML bottom often termed as ‘‘sagging’’ of the ML.

This suggests that accurate KDP measurements can be

used to retrieve maximum cooling rate within the ML.

Carlin and Ryzhkov (2019) also discuss other micro-

physical processes that could cause sagging brightband

signatures, including riming, aggregation, and increased

precipitation intensity and the cooling that ensues. In

another study, Kumjian et al. (2016) investigate dips in

MLs and document that denser, more isometric ice

falling into the ML can cause sagging of bright bands,

which is significant since rimed particles above the ML

can indicate supercooled liquid water that can cause

hazardous aircraft icing. In general, the ability to use

QVPs to estimate KDP in the ML for the first time (e.g.,

Trömel et al. 2017, 2019; Griffin et al. 2018) combined

with the understanding of how KDP can be used to

estimate ML cooling rates allows for potential im-

provement to ZH-based ML cooling rate estimation

methods (e.g., Carlin and Ryzhkov 2019) and a better

understanding of the causes of brightband sagging.

FIG. 11. Composite density scatterplot of maximum ZH in the ML

vs ML depth (km) for the 33 QVP ML events.
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Quantification of polarimetric variables in and above

the ML not only provides details of the complexity of

ML microphysics and what they reveal about ice pro-

cesses above, but it can also be used to relate elevated

microphysical processes to precipitation characteristics

near the surface, helping to better inform numerical

weather prediction models.

5. Summary

This study uses quasi-vertical profiles obtained from

a large-scale database of U.S. WSR-88D S-band radar

data to document polarimetric characteristics of the ML

in 33 cold-season precipitation events with high vertical

resolution and improved statistical accuracy. The heights

of theML top andML bottom are determined using a rhv
threshold and then compared to those found by FZ95

who use a reflectivity-based curvature method. The cur-

vature and polarimetric methods compare well within

regions of higher ZH, with the FZ95 curvature method

exhibiting slightly higher (i.e., approximately 200m)ML

tops and slightly higher or lower (i.e., approximately

50m) ML bottoms. Within regions of ZH , 20dBZ, the

FZ95method frequently failed. Using the QVPs, statistical

FIG. 12. QVPs of (a) ZH (dBZ), (b) ZDR (dB), (c) rhv, and (d) KDP (8 km21) for KDGX from 0006 through

1500 UTC 12 Feb 2014, at 108 elevation. Contours of HRRRmodel wet-bulb temperature (8C) are overlaid in each

plot. Also, ZH is contoured at 10, 20, 30, and 40 dBZ.
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relationships are developed to gain insight into the

evolution of microphysical processes above, within, and

below theML, leading to a statistical polarimetric model

of the ML that reveals characteristics that reflectivity

data alone are not able to provide, particularly in regions

of weak ZH.

A significant and repetitive feature of the events

studied is the occurrence of twoML regimes. Regions of

higher ZH distinctly indicate the presence and location

of a ML collocated with enhanced ZDR and reduced

rhv while at other times a well-defined ML is difficult

to discern using ZH alone (e.g., Fig. 1). During the

periods of weak ZH (i.e., ,20 dBZ), the ML is only

identifiable in the polarimetric imagery where a dis-

tinct ML signature is clearly evident in the ZDR and

rhv fields. Furthermore, a nonmonotonic dependence

of ZDR on ZH in the ML is observed. The evidence of

very large ZDR (up to 4 dB) and d up to 88 associated
with lower ZH (from 210 to 20 dBZ) is documented

when pristine, nonaggregated ice falls through the

ML. When ZH in the ML is large (i.e., .20 dBZ), a

stronger relationship between ZH and ZDR in the ML

is observed, as ice particles and aggregates become

more oblate as they melt.

Another notable feature of the polarimetric QVPML

data are the values of d observed at S band, generally

ranging from 218 to 58 with maximum values up to 88.
The larger d values are positively correlated withZDR in

the ML and are observed not only within enhanced ZH,

but also in regions of weak ZH, when a ML signature

would not be detected using conventional ZH data

alone. LargerZDR in theML generally occur with larger

d, potentially indicating more efficient aggregation

above the ML and larger-sized partially melted snow-

flakes in the ML. We also present the first QVP obser-

vations of KDP in MLs at S band, which reveal positive

correlation (i.e., r 5 0.57) between maximum KDP and

maximumZH in theML. This provides confidence in the

QVP processing routine implemented for KDP estima-

tion in the ML. Results presented in the paper are also

compared with those of a previously published study

conducted at X band in Germany.

Analyses indicate positive correlation (i.e., 0.89 and

0.96, respectively) betweenZH in rain (i.e., 0.3 km below

ML) and ZH in snow (i.e., 0.3 km above ML) and be-

tween ZH in rain and maximum ZH in the ML. The

correlation between these variables suggests that ZH

measurements in the ML can be used to estimate pre-

cipitation intensity near the surface in winter weather

systems, where the height of the ML is typically quite

low. Also, negative correlation occurs between mini-

mum rhv in theML and the corresponding enhancement

of ZH (i.e., DZH 5 ZHmax 2 ZHrain), with greater DZH

generally associated with lower minimum rhv in theML.

Positive correlation exists betweenmaximumZDR in the

ML and DZH, with greater ZDR in the ML generally

occurring during greater DZH. Also, greater ML depths

occur during lower minimum rhv and higher maximum

ZDR in the ML, with correlation betweenML depth and

minimum rhv in the ML. These ML statistics are particu-

larly important for developing a PVPR technique to miti-

gate the impact ofMLcontaminationonpolarimetricQPE.

A microphysically driven connection has been found

between polarimetric signatures in the ML and aloft in

the DGL and the temperature at the top of the cloud.

Observations of high KDP in the ML is typically associ-

ated with sagging bright bands during colder cloud-top

temperatures, enhanced amount of snow above the

ML, and enhanced KDP in the dendritic growth layer

(DGL; between 2108 and 2208C). Also, a positive cor-

relation (i.e., 0.42) between KDP in the DGL and KDP

in the ML is observed.

Overall, the results of this analysis provide a next step

toward advancing understanding of ML microphysical

processes in cold-season precipitation and demonstrate

the value and reliability of QVPs in detecting key features

in ML regions of clouds. Considering that polarimetric

radar variables in the ML are poorly represented in nu-

merical weather prediction models, statistical analyses of

polarimetric signatures in and near the ML such as those

presented here have the potential to lead to improved

model parameterizations as well as improved estimation of

precipitation intensity near the surface in winter storms.
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